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A diagram of regimes was devised and an analysis was given of a two-phase counter-current flow 
of gas and liquid in a bed of packing under trickle and bubble flow. It was found that the various 
forms of expressions for the two-phase pressure drop in trickle and bubble flow beds are partic
ular solutions of the general equation of the flow of I iquid and gas through a bed of packing. 

This paper is an attempt to generalize the results obtained in the study of trickle 
beds!- 8 and to unify description of principal hydrodynamic characteristics of trickle 

and bubble flow beds. 

THEORETICAL 

A BED OF PACKING UNDER TRICKLE FLOW 

The earlier published l theoretical analysis of a two-phase counter-current trickle flow in a bed 
of packing was to provide a unified description of the process based on general laws of motion 
of fluids with suitably selected empirical coefficients! in the whole range of variables starting 

from zero flow rates of phases up to flooding. 
Under acceptable assumptions the analysis! lead to a balance of vertical components of forces 

acting on a stream of liquid in a unit volume of the column in the following form 

!!.Pg/ l + !!.P1 / l + !!.Ps / l = 1M, 

fj,Pg/1 = 'l'g(Gi/ [2(!gde(e - Z)3]) , 

!!.P IiI = 'l'1(Gf/2(!ldez3
), !!.Ps / l = (1 - rp) illg· 

(1) 

(2) 

(3), (4) 

The first term on the right hand side of Eq. (1), !!.P g/ I, denotes the pressure force of the gas 
acting on liquid. This force is expressed in Eq. (2) in a usual manner by means of the velocity 
of gas in a bed of equivalent diameter of the gas stream, deg = de(e - z), and the friction factor, 
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1636 Broz, Kohii': 

'IIg. Thc second term, APi/I, denotes the friction force acting between the liquid and the surface 
of the packing plus the interfacial gas-liquid friction. The latter is given in Eq. (3) also in terms 
of the velocity of liquid, equivalent diameter of the liquid stream, del = dez, and the friction 
factor 'III' The third term, APsI!, formally expressed in Eq. (4) by means of the coefficient 'P, 
denotes the volume forces of liquid transmitted onto the packing (and the grid) either directly 
or by the surface tension forces acting between the liquid and the surface of the packing. APsl1 
is a function of gas and liquid flow rates, the geometry of packing and the surface forces. At zero 
velocity of liquid, for instance, this term represents the static hold-up. All participating forces 
are related to the area of cross-section occupied by liquid hold-up, z. The term on the right hand 
side of Eq. (1) expresses the volume forces acting on the liquid and it is also related to the cross
section of hold-up. From the above it is apparent that the coefficients'll g and'll I possess the mean
ing of friction factors and their value may be determined only in case of a single-phase flow 
of gas or liquid through the whole cross-section from e.g. the Ergun equation! 1. By substituting 
Eqs (2)-(4) into (1) one obtains a relation for the dependence of liquid hold-up on the mass 
velocities of gas and liquid in the form! 

(5) 

From this analysis it follows that gas pressure drop and liquid hold-up may be expressed in terms 
of three coefficients 'IIg' 'III and 'P, which have to be determined empirically. By processing an 
extensive set of experimental data2 - 8 on I iquid hold-up and gas pressure drop with the gas flow 
rate ranging from zero up to flooding and in a wide range of liquid flow rates, physical properties 
of liquid, the diameter and geometric shape of packing we have found that: 1) The dependence 
of the friction factor 'IIg on gas Reynolds number computed from Eq. (2) for a given flow rate 
of liquid is very complex and cannot be expressed analytically by simple means3 . 2) For a given 
flow rate of liquid, however, one can delimit two regions of gas mass velocities: A region below 
(0 ;£ Gg ;£ Ggk) and above (Ggk ;£ Gg ;£ Ggz) the loading point within which the pressure drop 
has a satisfactory linear course 3 ,5 in terms of the variables of Eqs (6) and (7), 

(6) 

eG; , 

2gQIQgde(e - z)3 + Qh . 
(7) 

This suggests that the coefficients 'P and'll I' or .; and" are independent of gas mass velocity and 
in given regions may be determined empirically. Eq. (6) was obtained by substituting Eqs (3) 
and (4) into (1); Eq. (7) was found empirically. At low liquid flow rates, < 0, for intermediate 
rates , = 0 and for high flow rates , > O. 3) From the linear dependence of the pressure drop 
in terms of the variables of Eqs (6) and (7) it further follows the empirical finding that the rela
tion of liquid hold-up and gas mass velocity may be written in terms of the variables of Eq. (5) 
in the following form3 

(8) 

where the coefficients [) and 11 are constants independent of gas mass velocity within the given 
range and may be evaluated from experimental data or calculated from the coefficients 'P, 'II I' .; 
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and I; (ref. s). The relation between liquid hold-up and gas mass velocity in variables of Eq. 
(8) in the region Ggk ;0;; Gg ;0;; Ggz then enables one to derive a limiting condition of flooding 
in the form l ,4,B (provided dGgz/dz = 0) 

(9) 

The next step of the analysis was a search for a suitable expression of the empirical coefficients 
of hold-up (9, 17) and pressure drop «(0, '1'1 or C;, O. However, we have concluded that generally 
valid and sufficiently accurate relations for individual coefficients for packings of various diame
ters, shapes and for different flow rates and physical properties of phases cannot be expected . . 
Accordingly, all these coefficients were eliminated from Eqs (6) and (8) and replaced by quantities 
that are more relevant to the process on the packing and can be therefore easily determined 
experimentally. For liquid hold-up and gas pressure drop in the range Ggk ;0;; Gg ;0;; Ggz we have 
following relations 

(
Gg )" 2 (!gZ (z3 - z;) (e - z) zz)3 
Ggz Q;; = z~ - z; (e - zz) z ' 

(10) 

(lJ) 

In the range 0 ~ Gg ~ Ggk then 

( 
G~)2 (!gk z3 - Z6 «e - z) Zk)3 

Ggk ~ = Z~ - Z6 (e - zk) Z ' (12) 

(13) 

For hold-up we have derived B 

(14) 

For the extrapolated hold-up, ze' and the hold-up in the loading point, zk, we have found em

pirically on our packingsB 

(ze/e) = l'044(zo /e) - 0·009, Zk = l'041zo . (15), (16) 

Equations (1)-(16) summarize all relations necessary in the following text. They also reflect 
the development of the problem as has been presented in preceding papers l 

- B. Although the 
correlations of the quantities zo' Ggz and IlPgz for our packings have been made available, they 
are not shown here in order to underline the fact that Eqs (9)-(14) possess a more general char
acter and form basic relations requiring additional information associated often with hard-to
define properties of liquid and packing (quality of the surface, forces acting between the packing 
and fluids etc.). The way in which the quantities zo, Ggz , IlPgz were defined is not essential and 
may change from case to case. These quantities as well as the empirical relations (15) and (16) 

will certainly be subject to further development. 
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1638 Broz, Kolar: 

BUBBLE FLOW COLUMNS 

As has been mentioned in the introduction this paper is an attempt to find relations 
between hydrodynamic characteristics of trickle and bubble flow columns which 
should lead to their unified description. This effort was motivated by the solution 
of an algebraic equation of the sixth order for the relative hold"up, z/e, Eq (17), 
which was given rise to by substituting numerical values for the coefficients [1 and 1] 

and the mass velocities of phases, Gg and G1, in Eq. (8) 

or, in an abbreviated form and with the aid of Eq. (14) and (9) and the relative 
hold-up 13 = z/e 

136 - 3135 + 3134 - [1 + f3~ - (1 - f3z)4 (Gg/Ggz)2J 133 + 

(I7a) 

Six roots were obtained of which only two were usually real, the rest being conjugated. 
The real roots are shown in Fig. 1 * for several liquid velocities. As it is apparent 
the dependence of liquid hold-up on gas velocity has two branches originating in the 
point f3z, Ggz • The lower branch represents the hold-up in a trickle bed as a function 
of velocity of counter-current gas, i. e. the case for which Eq. (8) was derived. 
The upper branch was speculatively interpreted as a dependence of the hold-up in a 
bubble flow column on the velocity of gas; gas being the discontinuous phase. If it is the 
case, then Eqs (6)-(8) would have to hold for the bubble flow regime with the same 
values of the empirical coefficients as those for the trickle bed. The constancy of the 
coefficients ~, (, 0/1 and cp, however, is very unlikely. It may be expected, for instance, 
that the coefficient cp in a bubble flow bed will reach unity. Pertaining data for verifica
tion of our assumption were found in paper of Musil, Prost and LeGoff9 and that 
of Bljachman and Jakubson1o in graphical form. 

Fig. 2 shows the experimental hold-up for water in a buble flow bed of Raschig 
rings 10·3 mm diameter as function of velocity of air taken over from Fig. 1 ref. 9. 

Fig. 3 · plots then the dimensionless gas pressure drop versus gas mass velocity as 
a log-log plot. A gradual increase of the exponent over the gas velocity is typical 
for trickle beds and it is often used to define some characteristic points: the loading 

Since only the real roots were needed, we found them easily from Eq. (10) by substituting 
various z for selected ze(z) and Ggz• 
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Two-Phase Countercurrent Flow through a Bed of Packing. IX. 1639 

point and the upper and lower flooding points. The lower flooding point is shown 
in Fig. 3 by large circles, the upper one by dash-and-dot line. The hold-up and 
pressure drop curves in Figs 2 and 3 are continuous in the whole range of gas veloci
ties pertaining to trickle and bubble flow beds. It is stressed, however, that the data 
for trickle and bubble flow beds were obtained independently and the curves shown 
in Figs 2 and 3 are combinations of corresponding branches for trickle and bubble 
flow beds. Clearly, it is not possible to proceed along the hold-up line for a trickle 
bed up to flooding, pass into the bubble flow regime by decreasing the flow rate 
of gas and reach ultimately the relative hold-up f3 = 1 at zero velocity of gas. 

Figs 4 - 6 show the liquid hold-up and gas pressure drop from Figs 2 and 3 in terms 
of variables of Eqs (6) - (8) used earlier for processing the trickle bed data. In order 
that we may judge visually from Figs 2 - 6 the region in which the empirical coeffi
cients (in Eq. (6) qJ and 1jI1; in Eq. (7) ~ and (; in Eq. (8) 9 and 17) retain a constant 
value independent of gas velocity, the characteristic points are · shown graphically. 

FIG. 1 

Dependence of the Relative Hold-up on Gas 
Mass Velocity 

The gas velocities of the flooding point and 
the coefficients f) and 1/ are given in Table I. 
1 G

1 
= 1·1 kgm- 2 s-1, 2 3·5,36·5,411·1, 

517·5. 
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FIG. 2 

Dependence of the Relative Hold-up under 
Trickle and Bubble Flow on Gas Mass 
Velocity 
G1 (kg m- 2 S-I) 1·1 3·5 6·5 11·1 17·5 
trickle flow e e () 0 0 

bubble flow <D 

--
() • 0 

Experimental data were taken from Musil, 
Prost, Le Goff9 - Fig. 1. Full lines were 
computed from Eq. (10) by substituting ze 
and Ggz from Table I. Broken line indicates 
the loading, large circles the lower flooding 
and dash-and-dot line the upper flooding 
points. 
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The values of loading point, computed from Eqs (6), (10) and (16), are indicated 
by broken line, the values of the lower flooding point, computed from Eqs (6), (9) 
and (14), by large circles, and the values of the upper flooding point (or a transition 
to the bubble flow regime), computed by setting Gg = Ggz in a semiempirical equation 
(18) proposed by authors9

, are indicated by dash-and-dot line. 

(18) 

A very good linearity of the relations between the loading and lower flooding 
points Ggk ;£ Gg ;£ GgZ under trickle flow is apparent from Figs 4-6. Corresponding 
empirical coefficients for individual liquid flow rates were evaluated graphically 
and may be found in Table 1. A relatively satisfactory behaviour even below the load
ing point 0;£ Gg ;£ Ggk is evidenced by a good agreement of the experimental 
and calculated values of hold-up (see the full lines in Fig. 2 representing the com
puted hold-up . versus gas mass velocity curve obtained by extrapolating the data 
from the region Ggk ;£ Gg ;£ Ggz). On transitioh to a bubble flow bed (upper flooding 

FIG. 3 

Dependence of the Dimensionless Pressure 
Drop on Gas Mass Velocity in a log-log 
Plot 
G1 (kg m- 2 S-1) 1·1 3·5 6·5 11-1 17·5 
trickle flow e e () • 0 

bubble flow CD ~ () 0 0 

Broken line indicates loading, large circles 
lower flooding and dash-and-dot line upper 
flooding points. 

FIG. 4 

Dependence of the Dimensionless Press ure 
Drop on Gl!2gQrdez3 
G1 (kgm- 2 s- 1 ) 1-1 3·5 6·5 11·1 17·5 
trickle flow e e () 0 0 

bubble flow CD ~ () • 0 

Broken line indicates loading, large circles 
lower flooding and dash-and-dot line upper . 
points. 
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FIG. 5 

Dependence of the Dimensionless Pres
sure Drop on Gf /2g(!g(!jde(e - z)3 
G j (kgm- Z s- 1) 1'117'5 
abscissa A B 
trickle flow 8 0 

bubble flow (l) 0 

Broken line indicates loading, large circles 
lower flooding and dash-and-dot line 
upper flooding points. 

600 
-:] 

I 

400 

(iil 

200 

X 3 

FIG. 6 

05 

D ependence of Liquid Hold-up on Gas Mass 
Velocity in Variables of Eq. (8) 
Y = 2g(!fdez3 / G[,X = (Gg/ G1)z «(!Ii(!g)' 
. (z/e - z )3 , G

1 
= 3·5 kg m- z S-l ,e trickle 

flow, __ bubble flow bed. Broken line indicates 
loading, large circles lower flooding and 
dash-and-dot line upper flooding points . 
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A lO 
B 0·10 

~ 
~ll9 

FIG. 7 

Dependence of the Dimensionless Pressure 
Drop on the Relative Hold-up of Liquid 
Gj (kg m- 2 S-l) 1·1 3'5 6·5 11 '1 17·5 
trickle flow 8 e () 0 0 

bubble flow (l) __ () • .0 

Full lines were computed from .Eqs (6) ~nd: 
(19) with the aid of thecoefhcients fron,.' 
Table I. Broken line indicates loading, large' 
circles lower flooding and dash-a nd-dot 
line upper flooding points. Line 1 extrapolate;:; 
the dependence of the lower ,flooding point, 
to zero hold-up and pressure drop. 
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lABLE I 

Experimental and Computed Values of Some Characteristics of a Two-phase Flow of Liquid 
a nd Gas in Trickle and Bubble Flow Beds of Raschig Rings 10 mm Diameter - Data of Musil , 
Prost, Le Goff9 

Two-phase flow characteristic 
Liquid mass velocity G I (kg m - 2 S-1) 

1-1 3,5 6·5 11·1 17·5 

Trickle flow bed 

/) = 2gcdd.e
3 P;/Gr 3·9 1·8 1-125 1·08 1-06 

17 11 ·3 15-8 26·75 47·0 195·0 

Pe 0·07108 0·1187 0,1535 0·2161 0·2912 

Pz 0·1377 0·2022 0·2452 0·3169 0·3964 
G gz measured 0·853 0 '59l 0·429 0·260 0·097 
GgZ computed from Eq. (9) 0·867 0·629 0·432 0·266 0,103 
<p Eq. (6) - from Fig. 4 0·42 0·41 0·4 0·39 0·38 
'1'1 Eq. (6) ~ from Fig. 4 2,1 0·82 0,526 0·426 0·402 
(I!!.Pgz/Qllg) computed from Eq. (6) 0·346 0·318 0·285 0·265 0,230 
(I!!.Pgk/ Cl l lg) computed from Eq. (6) 0·0822 0·0987 0·0569 0·0546 0·0435 
Ggk computed from Eq. (10) 0·625 0·449 0·296 0·151 0·055 

Pk 0·08302 0·1349 0·1702 0·2283 0·3030 
';from Fig. 5 4·75 75 
(, from Fig. 5 - 400 0 
<p computed from Eq. (5) 0,416 1·64 
'1'1 computedS from Eq. (6) 0·384 0·407 

Bubble flow bed 

Rei 2·45 7-8 14·5 24·7 39·0 

"'t(Il=1) = 22'6/ Re, + 1·11 9·24 3-66 2,48 1·91 1-61 
(I!!.P J/Qlg); (P = 1) Eq. (3) 0·00085 0·00341 0·008 0·0179 0·0376 
kl from Fig. 7 0·279 0·181 0·108 0·076 -0,322 

k 2 from Fig. 7 0 ·720 0·806 0·884 1·058 1·284 
pi Eq. (18) 0·299 0·332 0·378 0·449 0·624 
(tlP/C!,lg): from Fig. 7 0·495 0·458 0·442 0·399 0·479 

point), the courses given by Eqs (5) -(7) begin to depart from those for a trickle 
bed and further on display a non-linear character. That proves that a bubble flow 
bed cannot be described by Eqs (6)-(8) with constant, gas-velocity-independent 
empirical coefficients as has been done in the case of trickle flow. Thus a relatively 
good prediction of the relation between liquid hold-up and gas mass velocity under· 
the bubble flow regime, and at high liquid flow rates in particular, is rather sur
prising (Fig. 2). In contrast, for low liquid flow rates, the calculated relation of liquid 
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hold-up and the mass velocity of gas begins to deviate from experimental data 
already in the lower flooding point. As follows from Eqs (9) and (14) at constant velo
city of gas, this suggests that between the lower and upper flooding points the value 
of 1] decreases at simultaneous increase of the coefficient [) (and hence also the extra
polated hold-up ze). 

The dependences plotted in Figs 4-6 were not linear in the bubble flow region . 
On the other hand, a plot of the dimensionless pressure drop on the relative hold-up 
shown in Fig. 7 may be regarded as linear in this very region. 

(19) 

Clearly, for a trickle flow bed the relation of pressure drop in these variables is 
strongly non-linear since it is described by Eq. (6), which for high relative hold-ups f3 
approaches asymptotically the value of the coefficient cpo Fig. 7 further illustrates 
the decrease of pressure drop of the lower flooding point with increasing flow rate 
of liquid known from the literature. To verify the limiting points of this dependence, 

05 

\-0 

FIG. 8 

Dependence of the Dimensionless Pressure 
Drop on the Relative Liquid Hold-up 
Lower flooding point : 10 mm Raschig rings, 
8 data of MusiJ9 , 0 this work; 10 mm glass 
spheres, • this work. Upper flooding point: 
10 mm Raschig rings, CD data _ of Musil9

, 

e BljachmanlO • Dependence at Gg = O. 
() 10 mm Raschig rings, this work, ~ 10 mm 
glass spheres, this work. 
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FIG. 9 

Diagram of Regimes of a Two-Phase Flow 
in a Bed of 10 mm Raschig Rings 
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the measurement of pressure drop of the lower flooding point in a column 109·8 mm 
diameter packed with 10 mm Raschig rings and 10 mm glass spheres was carried out. 
Theresults are shown in Fig. 8 together with the data of Bljachman and Jakubson1o 

obtained with 10 mm Raschig rings. From this figure it is apparent that starting 
from a certain flow rate of liquid the gas is being entrained by liquid. By blocking 
the escape route of gas below the supporting grid, the entrained gas has to travel 
back up through the packing giving rise to a pressure drop in the system with no gas 
supplied by the fan (Gg = 0). The intersect of the curve for the lower flooding point 
and that for zero velocity of gas (Gg = 0) in Fig. 8 designates the point of flooding 
(i.e. a point where a thin layer of liquid appears above the packing) at zero velocity 
of gas. The end point of the curve of the lower flooding points at zero pressure drop 

TABLE II 

Characteristic Points of a Two-Phase Flow of Liquid and Gas in a Trickle and Bubble Flow Bed 

Po int G 1 Gg fJ I'>.Pg / fl l/g 

1 Static hold-up of liquid in a trickle flow bed 0 0-039 0 
2 Flooding point of a trickle bed at zero velocity 

of liquid 0 2·24 0·075 0,38 

3 Flooding point of a bu~ble flow bed at zero 
velocity of liquid 0 0·27 0·52 

4 Static hold-up of liquid in a bubble flow bed 0 0 0·95 
5 Onset of entrainment of liquid by gas in a trick-

le flow bed ",17 ;;:;; 0 ",0·3 0 
6 Flooding point in a trickle flow bed at zero 
. velocity of gas ",38 0 0·535 0·10 

7 Flooding point in a bubble flow bed at zero 
velocity of gas ",38 0 0·67 0·23 

8 Onset of entrainment of gas by liquid in a bub-
ble flow bed ",17 ;;:;;0 0·962 

9 Liquid hold-up in trickle flow bed with removal 
of entrained gas at zero gas velocity and such 
velocity of liquid which causes flooding unless 
the gas is removed 38 < 0 ",0·5 0 

10 Pressure drop computed from the resistance to 
a single-phase flow of liquid at a rate which 
causes flooding of a bubble flow bed at zero 
velocity of gas 38 ;;:;;0 0·85 

11 Single-phase "critical" velocity at which the 
pressure drop equals the driving force 104 0 0 

12 Lower flooding point of a trickle bed at zero 
gas pressure drop 70 < 0 0·7 0 
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l:1Pgz j(h 19 = 0 may be interpreted as giving mass velocity of liquid at which the re
sistance due to friction between the liquid on one hand and the gas and the surface 
of the packing on the other hand equals the driving force. The other end point, 
(l:1Pgz/(h 19)p=o = 0-41, may be regarded as a pressure drop of the lower flooding 
point extrapolated to zero hold-up of liquid. A similar curve, obtained with the aid 
of Eq. (18), is drawn for the bubble flow regime and determines completion of the 
transition to a bubble flow bed. 

From the already discussed curves in Figs 2-8 it follows that the bubble flow 
regime cannot be described by mere interpolation of the relationships for trickle 
flow with constant values of empirical coefficients. Liquid hold-up and gas pressure 
drop are not linear in terms of variables of Eqs (6)-(8). However, from the conti-

TABLE I 

(Col!tinued) 

Point G G P 

13 Pressure drop of the flooding point in a trickle 
bed extrapolated to zero hold-up 0 2·32 0 0·41 Fig. 6 

14 Pressure drop of the flooding point in a bubble 
flow bed extrapolated to zero hold-up 0 3·05 0 0·7 

15 Hold-up of a wet layer at unit dimensionless 
pressure drop 0 choice 0·01 

16 Hold-up of a bubble flow bed at unit dimen-
sionless pressure drop 0 choice 0·1 

17 Pressure drop of the loading point in a trickle 
bed at zero velocity of liquid 0 1·055 0·0406 0·086 

18 Pressure drop of the loading point in a trickle 
bed extrapolated to zero hold-up 0 1·062 0 0·092 

19 Loading point of a trickle bed at zero velocity 
of gas 29 0 0·465 Fig. 9 0·032 

20 Point of transition of a bubble flow bed from 
the regime of flow of individual free bubbles to 
the flow of bubble clusters at zero velocity 
of liquid 0 0·022 0·81 0·9 

21 Point of transition of a bubble flow bed from 
the regime of flow of individual free bubbles to 
the flow of bubble clusters extrapolated to unit 
pressure drop 0 0·74 Fig. 9 

22 Point of transition of a bubble flow bed from 
the regime of flow of individual free bubbles 
to the flow of bubble clusters at G g = 0 0 0·875 0·57 

Collecti on Czechoslov. Chern. Cornmun. /Vol. 38/ (1973) 



1646 Broz, Kohli' : 

nuity of the curves in the transition region follows the continuity of the descriptions 
of trickle and bubble flow beds. In case of pressure drop it is the transition from Eq. 
(6) to a form given in Eq. (19). Such description will be attempted in the following. 
First, however, we shall generalize the situation depicted in Figs 7 and 8 and con
struct a diagram of regimes of a two-phase flow of liquid and gas in a bed of packing. 

THE DIAGRAM OF REGIMES OF A TWO-PHASE FLOW OF LIQUID AND GAS IN A BED 

OF PACKING 

Fig. 9 is a diagram of regimes indicating individual regimes and characteristic points of a two
phase flow of liquid and gas in a trickle and bubble flow bed. The ranges of gas pressure drop 
and liquid hold-up are respectively 0 ;?; I1P/ el1g ;?; 1 and 0 ;?; P ;?; 1. The diagram of regimes 
was drawn for a packing of Raschig rings 10 mm diameter using data of authors9 ,lO and our 
own measurements. It is assumed that the packing is fixed on top by a grid to prevent its motion 
and that the resistance of the supporting grid to the flow of gas and liquid is negligible. The 
distribution of liquid and gas is assumed uniform both in space and time. The data on gas pres
sure drop and liquid hold-up from outside the operating region of counter-current trickle and 
bubble flow beds are lacking and the existence of individual regimes is only a speculation based 
on observation and physical reasoning. Accordingly, the existence of certain regimes as well as 
the position of some characteristic points or lines may be corrected by future experiments. 

The lines p = 0 and p = 1 in Fig. 9 represent respectively the dimensionless pressure drop 
of a single-phase flow of gas I1Pg/ ellg = I1P/e l1g and liquid I1Pdellg = 1 - I1P/ ellg. The 
abscissa gives the hold-up for various flow rates of liquid. The lower left hand corner of Fig. 9 
comprises a region where the discontinuous phase is liquid; in the upper right hand corner the 
continuous phase is liquid. Point 1 in Fig. 9 marks the static hold-up of a trickle bed at zero 
flow rate of liquid . Its value may be calculated from a number of correlations or determined ex
perimentally. Point 2 represents the flooding point of the bed at zero flow rate of liquid. This 
point can be approached experimentally by increasing the velocity of gas and simultaneous 
decreasing the flow rate of liquid. Point 3 indicates the upper flooding point or the terminal 
point of a transition to a bubble flow bed. The abscissa of the point 4 (I1P/ e/g = 1) may be 
generally smaller than unity providing that after closing the supply of gas into the bubble flow 
bed its static gas hold-up remains in the bed. Point 4 is thus an analogue of the static hold-up 
of liquid in a trickle flow bed (Point 1). By increasing the flow-rate of liquid in a trickle bed 
the hold-up increases and we move along the axis of the dimensionless hold-up pat I1Pg/ e(lg = O. 
Having reached a certain flow rate of liquid a marked entrainment of gas by liquid occurs 
(Gg < 0) - point 5. If the entrained gas is not allowed to escape through the supporting grid 
(Gg = 0), it returns upwards causing a certain pressure drop arcross the bed to appear. By further 
increase of the liquid flow rate the pressure drop increases reaching at Ggz = 0 the first flooding 
point in point 6 where a thin layer ofliquid forms on top of the packing. Point 7 is again a terminal 
point in transition to a bubble flow bed. Following the zero gas velocity line (Gg = 0) at simulta
neous decrease of liquid flow rate we reach point 8 at p = 1. This point determines that single
phase liquid flow rate at which each bubble of gas introduced into the stream is pulled down 
below the supporting grid. The ordinate of this point then depends on the size of these bubbles. 
Point 9 marks the liquid hold-up at zero pressure drop in case when the entrained gas is being re- , 
moved (G g < 0). The liquid flow rate of this point would cause flood in gin point 6 if the entrained 
gas was forced to remain in the bed. Point 10 is determined by pressure drop of a single-phase flow 
of liquid at rates corresponding to points 6, 7 and 9. With the rate of liquid under single-phase 
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flow further increasing we approach point 11 until reaching the state when the pressure drop 
of liquid at fJ = 1 equals the driving force. This critical flow rate may be calculated from an 
equation for the resistance under single-phase flow through the bed of packing, e.g. the Ergun 
equationll . On proceeding now from point 6 along the line of the lower flooding point and in
creasing the liquid flow rate we have to withdraw an increasing amount of entrained gas from 
below the supporting grid. The pressure drop necessary to reach the lower flooding point is 
thus decreased until in point 12 it reaches zero. The line of the lower flooding point would ter
minate in point 11 (fJ = 1, tiPg/ ellg = 0) for a packing of such geometric shape which would 
not permit the bubbles of entrained gas to stay within the pockets of packing by the action 
of capillary forces. For a packing of Raschig rings 10 mm diameter we have observed that a part 
of the gas does remain trapped within the rings having their axis close to a horizontal level. 
A relatively large number of bubbles were retained in the packing even with the height of liquid 
reaching 10 cm above the top. The bubbles wiJIleave their traps only after the pressure fluctua
tions of liquid have exceeded the value of interfacial te"nsion . It is apparent that of prime impor
tance are the size, the shape and orientation 'Jf a piece of packing, the surface tension and the 
contact angle. In case of the upper flooding point line the location of the terminal point on the 
beta axis at tiPg/ ellg = 0 is determined by the history of the packing. Let us suppose that we 
start from a single-phase flow of liquid at fJ = 1 from point 11 and introduce bubbles of gas into 
the bed. The bubbles will be pulled below the supporting grid and it is very unlikely that any 
of them would penetrate into the voids displacing the liquid and remaining there. On the other 
hand, when starting with a bubble flow bed at low holds-ups of liquid and increasing the flow 
rate of liquid the same situation as that described in connection with the lower flooding point 
will occur and the terminal point will appear somewhere between points 12 and 11. For this 
uncertainty we shall regard point 11 as the terminal point of the upper flooding point line. 
From Figs 7 and 8 it is seen that in region GI ~ 0 the upper and lower flooding point lines , delimit
ing the transition to a bubble flow bed, may be approximated by straight lines. Extrapolating 
these straight lines to zero hold-up, fJ = 0, points 13 and 14 are obtained. The pressure drop 
of a dry packing in point 13 may be calculated from the gas mass velocity of the lower flooding 
point extrapolated from point 2 Ggz (G I = 0) to zero liquid hold-up Ggz (fJ = 0). The extrapolated 
pressure drop in point 14 (read ofl' from Fig. 7) for a bed of Raschig rings is given in Table II. 
The extension of the Jines for the upper and lower flooding points at GI ~ 0 leads to points 15 
and 16 giving rise to the regime of gas flow through a wet layer of packing - K (G I = 0), ·the 
transport of entrained liquid by gas - L (GI < 0), non-stationary bubble flow regime at G1 = 0, 
or the transport of liquid by bubbling gas M - (G I < 0) . 

There are two principal definitions of the loading point existing in the literaturell. The first 
definition utilizes a log-log plot of the pressure drop versus gas mass velocity. The pressure drop 
of the loading point in these plots increases with increas ing flow rate of liquid , while the pressure 
drop of the flooding point decreases. From this it follows that the flooding and the loading points 
should coincide at a certain gas mass velocity Gg > O. The other definition of the loading point 
is based on the dependence of hold-up on gas velocity. A defined increment of hold-up in com
parison with the hold-up at zero pressure drop across the layer is taken for definition of the 
loading point (an increased interaction between the gas and liquid). The pressure drop of the 
loading point s decreases with the velocity and it may be easily defined even for nega tive gas 
velocities in region F. Here it is assumed that the loading point at zero pressure drop is reached 
in point 12. Provided that the relation is linear the points 17 and 18 represent the pressure drops 
of the loading points extrapolated to zero flow rate of liquid and zero hold-up. Point 19 is then 
the loading point at zero gas velocity Ggk = O. Similarly as for trickle beds, where the loading 
point marks the change of regime, an analogous transition of regimes may be expected in case 
of the bubble flow bed. The authors lO observed a transition from the regime of flow of individual 
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free bubbles to a pulsation regime characterized by clusters of bubbles (larger bubbles) rising 
at a velocity greater that that of free motion of bubbles. The hold-up of the transition between 
these two types of bubble flows, point 20, was estimated from data l o. Point 21 is an extrapolation 
of this point to unit dimensionless pressure drop; point 22 is its intersect with the Gg = ° line. 

The above mentioned characteristic points are defined by the regimes of a two-phase flow 
of liquid and gas in trickle and bubble flow beds: 

A (1,5,19,17,1) Trickle flow bed with counter-current flow of gas below the loading point. 

B (17,19,6,2,17) Trickle flow bed with counter-current flow of gas between the loading and 
flooding points. 

C (2,6,7,3,2) Transition regime between a trickle and a bubble flow bed. 

The transition region is delimited by the lower and upper flooding points. These points differ 
primarily in their pressure drop and hold-up and their gas velocity is constant or changes only 
very little. Our experimental runs ended usually in the lower flooding point by formation of a thin 
layer of foam or liquid on top of the packing. By increasing the flow rate of liquid the layer 
grows. If, however, the flooding is initiated in the vicinity of the supporting grid, the upper 
flooding point is reached. The onset of flooding near the grid is probably caused by diminished 
free cross-section available to the flow of gas due to the presence of the grid, by lower local 
porosity or by imperfect conditions for draining. We have observed that high flow rates of liquid 
tend to reach the upper flooding point. In contrast, for lowest liquid flow rates and packings 
of large size or high porosity difficulties with entrainment occur already below the lower flooding 
point. 

D (3,7,20,22,3) Bubble flow bed with counter-current flow of gas in the form of clusters of 
bubbles. 

E (20,22,8,4,20) Bubble flow bed with counter-current flow of gas in the form of individual 
free bubbles. 

F (5,9,12,19,5) Trickle flow bed with co-current flow of entrained gas below the loading point. 

G (19,12,6,19) Trickle flow bed with co-current flow of entrained gas between the loading and 
flooding points. 

Eqs (10) and (12) do not hold in regions F and G with the original meaning of gas mass veloci
ty, G

g
, defined as the amount supplied by the fan. It should be realized that the amount trans

ported by liquid from top of the packing below the grid suffices to flood the packing. 

H (6,12,11,7,6) Transition region. 

I (7,11,22,7) Bubble flow with co-current flow of gas in the form of clusters of bubbles. 

The bubbles introduced into the layer are transported below the supporting grid. If they are 
not allowed to escape with the liquid, or if the gas is supplied below the grid by a distributor, 
the gas will accumulate and having reached a sufficient volume a bubble (slug) will pass through 
the packing giving rise to a strongly non-stationary regime. 

(11,10,8,22,11) Bubble flow bed with co-current flow of entrained gas in the form of individual 
free bubbles . A non-stationary regime occurs if the gas is supplied below the grid or the en
trained bubbles are not being withdrawn. 

K (1,17,2,15,14,13,18,1) Wet packing and counter-current flow of gas at zero flow rate of liquid . . 

L (2,3,16,15,2) Liquid transported by gas as carry-over. 

M (3,20,4,21,16,3) Transport of liquid upwards (G1 < 0) by bubbling gas, or non-stationary 
bubble flow bed at G1 = 0. 
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The diagram of regimes, aside from its particular validity for a packing of porcelain Raschig 
rings 10 mm diameter, pertains also generally to a two-phase flow through a bed of packing. 
Its general character rests in defining individual regimes and characteristic points . The dash-and
dot I ine in the diagram gives the depe ndence of pressure drop on liquid hold-up at G I = 11'1 kg . 
. m- 2 S-l taken from Fig. 7. 

THEORETICAL A NALYSIS OF A TWO-PHASE FLOW IN TRICKLE AND BUBBLE FLOW BEDS 

Two qualitatively different regimes - the trickle and the bubble flow - were de
picted jointly in the diagram of regimes in Fig. 9 with the dimensionless pressure drop 
and the relative hold-up as variables. The experimental courses of pressure drop, 
described by different relations (Eq. (6) and (19)), transform in region C continuously 
from one regime into the other. We shall therefore attempt a unified theoretical ana
lysis of a two-phase flow of liquid and gas in trickle and bubble flow beds. As before, 
the analysis starts from basic macro-balances of momentum and vertical components 
of forces acting on the liquid stream. In the derivation we shall retain all assumptions 
listed in the original paper1 on trickle flow bed. Unlike Musil and coworkers9 we shall 
admit direct contact of gas bubbles with the surface of packing. This assumption 
is regarded necessary not only for description of the static hold-up of gas trapped 
in the packing at zero flow rates of both phases, but, above all, for the two-phase 
flow through the packing. At the same time we believe that the volume forces of liquid 
transmitted onto the packing either directly as a consequence of the geometry of the 
packing or through the surface forces, cannot be expressed solely in terms of the 
static hold-up of gas or liquid. At the two-phase flow these forces are apparently 
greater and for a given flow rate of liquid change with the velocity of gas. 

A principal difference between trickle and bubble flow beds rests in the fact that 
in trickle beds the discontinuous phase is liquid, while in bubble flow beds it is the 
gas. The balance of the vertical components of forces acting on the liquid and gas 
in a trickle bed (i = 1, j = 0) and a bubble flow bed (i = 0, j = 1) then contains 
only the terms the presence of which depends on whether the liquid phase is con
tinuous (i = 0), or discontinuous (i = 1). The balance in joint notation takes then the 
following form 

for liquid: 
(20) 

for gas: 

where the intensive quantities are averaged in time and over the volume of the layer 
A. l. 'rls is the vertical component of friction between the liquid stream and the surface 
of packing and 'rIg is the vertical component of friction between the gas and the liquid 
stream. 'rgs is the vertical component of friction in the gas stream brought about 
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by changes of direction, contraction and expansion as well as by friction in contact 
with dry surface of packing, which cannot be expressed as friction between the gas 
and liquid streams ("Ig) .a ls ' a lg , ags are corresponding specific surfaces related to 
a unit volume of the bed. FI and Fg denote the volume forces of liquid and gas 
supported by the packing owing to the peculiarities of its shape and orientation 
in the bed and as a consequence of the surface tension forces. By adding Eqs (20) 
and (21) we obtain after some arrangement 

On the left hand side of Eq. (22) there is the experimentally found pressure drop 
and the experimental hold-up on the right hand side. 'Fhe friction stresses "Is and "gs 

and the corresponding specific surfaces have to be calculated or estimated also as 
a fraction of the volume forces ofliquid, FJ> or gas, F g , transmitted onto the packing. 
These are expressed by means of the coefficients q/ and q>* as follows 

(23) 

F 
- -g- = (q>* -1) [3; q>* ~ 1![3G

g
=G=o for G1 ~ O. (24) 

e{MAI 

As it is apparent from Eq. (22), liquid hold-up at constant pressure drop will be the 
lower the higher the value of the term containing "gs' The vertical component of fric
tion due to the changes of direction, contraction and expansion and perhaps due 
to friction with the dry surface of the packing does not increase the hold-up. However, 
"gs takes different values not only in trickle and bubble flow beds but it varies also 
with the flow rate of liquid. In order that we may assess the effect of the relative 
magnitude of the terms containing "gs and "gl on the relation of pressure drop and 
hold-up, we shall define the friction between the liquid and the gas stream by means 
of a fraction x and the following equation 

For the term expressing the los~es due to changes of direction, contraction and ex
pansicn, we obtain with the aid of Eq. (21) the following relation 

"gsa
gs 

= (1 - x) [(1 - [3)(AP - ~) -j(q>* - 1)[3J; 0;£ x;£ 1. (26) 
e{hg (hI9 QI 
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On substituting from Eqs (23), (24) and (26) into (22) we obtain finally 

!!,.p = {3[1 + jx (cp* - 1) - i(1 - cp')] + (1 - (3) (Qgj(!J) 
Qllg P + x (1 - (3) 

1 Llsa ls 

p + x(1 - (3) e{hg 
(27) 

The derived general equation (27) for the description of the pressure drop in trickle 
and bubble flow beds contains parameters x, cp', cp* and Lisa Is' The expected varia
tions of the fraction x and the parameters cp' and cp* accompanying the change 
of regime and liquid flow rate are the cause why the pressure drop in trickle and bubble 
flow beds cannot be described by a relation with constant coefficients. The given 
parameters cannot be evaluated from experimental data without additional assump
tions. For instance, the requirement of dividing the pressure drop between the 
contribution of the gas-liquid friction (x) and that due to changes of direction, 
contraction and expansion is quite demanding. One has to realize that even the 
single-phase flow through the bed has not been quite satisfactorily described, and the 
less so the part of the resistance due to skin friction. Only recently the single-phase 
flow in model beds of identical spheres has been studied in more detail. 

Some limiting solutions of Eq. (27) will be shown in the following. On neglecting 
the term (1 - (3) Qg/QI' Eq. (27) may be written for a trickle bed (i = 1,j = 0) as 

{3cp' 

(3 + x(1 - (3) 

and for a bubble flow bed (i = 0, j = 1) as 

(3[x(cp* - 1) + 1] 
(3 + x(1 - (3) 

1 Llsa ls 

(3 + x(1 - (3) eQlg 
(28a) 

1 Llsals 

(3 + x(1 - (3) eQlg 
(28b) 

The fraction x, denoting the gas-liquid friction, appears also in Eqs (28a,b) . It can be 
shown that below the loading point and under low liquid flow rates no visible inter
action between gas and the trickling liquid occurs. This follows both from weak corre
lation between liquid hold-up and gas velocity, and from a plot of the friction coefficient 
versus gas Reynolds number which has a similar course as that for the dry packing. 
As a first approximation we may therefore assume that the magnitude of the gas-li
quid friction will correspond to the skin friction on the surface of the packing at single
phase flow. Wentz and Thodos12 reported the friction losses in a bed of spheres 
equal 12%. For a packing of irregular shape, such as e.g. Raschig rings, this value 
will be apparently even lower. On setting x = ° in Eq. (28a) we obtain 
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(29) 

Assuming that als = a and after substituting 

(30) 
we arrive at the relation 

(31) 

which has the form of Eq. (6). 

For a bubble flow bed at low velocities of gas and high liquid hold-ups - regime E 
- a principal part of the resistance to flow is offered by the gas-liquid friction. 

Accordingly, setting x = 1 in Eq. (28b) we obtain 

L'lP = <p*/3 _ 'rISa ls • 

(hlg e(!lg 
(32) 

On comparing Eq. (32) with the empirical Eq. (19), evaluated on the basis of Fig. 7, 
we obtain an equation for the coefficient <p* in the following form 

(33) 

Unfortunately, Eq. (33) contains a term with the unknowns 'rls and als' To evaluate 
(p* one would therefore have to know the dependence of 'rlsals/e(!lg on the hold-up /3, 
or to assume a ls equal the total surface (a ls == a), and to evaluate the friction stress 
from data on single-phase flow of liquid. If, however, k1 = -'rlsQls/e(! lg the coef
ficient <p* == k2 and it is therefore independent of gas velocity. This will be probably 
true even for some higher liquid flow rates as follows from values of the coefficients 
k1 and k2 in Table I. 

From the presence of the coefficient <p* in Eq. (32) (by definition <p* > 1) it further 
follows that it is not necessary for the friction stress 'r ls to be negative as reported 
by authors 9 at lower flow rates of liquid. This physically very unlikely conclusion 
was apparently drawn from the assumption excluding the contact of gas bubbles 
with the surface of packing. In other words, the authors did not assume that the wall 
may counterbalance a part of the volume forces of gas either directly or through 
the action of surface forces between the phases. 

From the . derived general expression for description of trickle and bubble flow 
beds Eq. (27), and on the basis of the above mentioned assumptions regarding the 
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gas-liquid friction we have obtained Eqs (31) and (32). Furthermore, the conditions 
were shown under which these equations transform into simple limiting expressions 
(6) and (19), the validity of which has been empirically verified. In case of a trickle 
flow bed the various non-zero average values of the fraction under the regime below 
and above the loading point are apparently the cause of various empirical coeffi
cients evaluated experimentally from Eqs (6) and (8) in regions 0;;:; Gg ;;:; Ggk 

and Ggk ;;:; Gg ;;:; Ggz • 

LIST OF SYMBOLS 

a 
A 

de = l/a 

F 
g 

G 

specific surface of packing (m - 1) 

cross-section of bed (m2) 

characteristic diameter of packing (m) 
porosity 
volume force of liquid transmitted onto packing (N) 
acceleration due to gravity (ms - 2) 
mass velocity of fluid (kg m -2 s -1) 

i,j constants defined in text 
k, k l' k 2 empirical constants 
I height of bed (m) 
AP resistance of bed (N m - 2) 

Re = Gde / Il Reynolds number 
x fraction defined in Eq. (25) 

P = z/e 
If! 

/1 
()" 

liquid hold-up per unit volume 
relative hold-up 
empirical coefficient defined in Eq. (4) 
empirical coefficient determining the volume forces of liquid transmitted onto packing, 

defined in Eq. (23) 
empirical coefficient determining the volume forces of gas transmitted onto packing, 

defined in Eq. (24) 
coefficients in Eq. (8) 
friction factor 
empirical coefficient in Eq. (7) 
empirical coefficient in Eq. (7) (N m - 3) 

density (kg m- 3 ) 

viscosity (N s m - 2) 

surface tension (N m- 1
) 

friction stress (N m - 2) 

Subscripts 

transition point from flow of individual free bubbles to flow of clusters of bubbles 

extrapolated value 
k loading 

value at APg = 0 
packing 

sf static 
flooding 
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